

City of South Pasadena Planning and Community Development Department

Memo

Date: August 25, 2021

To: Chair and Members of the Planning Commission

From: Margaret Lin, Interim Planning and Community Development Director

Prepared Malinda Lim, Associate Planner

By:

Re: August 25, 2021 Special Planning Commission Meeting Item No. 1 – Additional

Document No. 1 – Revisions to staff report and resolution for 1818 Peterson

Avenue (Project No. 2237-HDP/DRX/VAR/TRP)

The preliminary geotechnical report was not included in the staff report. Staff has provided the report here as Attachment 1.

Attachments:

1. Preliminary Geotechnical Report

ATTACHMENT 1 Preliminary Geotechnical Report

Cal Land Engineering, Inc. dba Quartech Consultants

Geotechnical, Environmental, and Civil Engineering

May 12, 2020

Dr. Kevin W. Chu c/o Mr. William Chu 1825 Hanscom Drive South Pasadena, CA 91030

Subject:

Report of Geotechnical Engineering Investigation, Proposed Residential Development, 1818 Peterson Avenue, APN: 5308-025-027, South Pasadena, California; QCI Project No.: 15-023-138bEG

Dear Dr. Chu:

In accordance with your request, Quartech Consultants (QCI) has prepared this geotechnical engineering report for the proposed development at the subject site. The purpose of this report was to evaluate the subsurface conditions and to provide recommendations for foundation designs and other relevant parameters for the proposed construction.

Based on the findings and observations during our investigation, it is concluded that the subject site is suitable for its intended use from the geotechnical engineering viewpoint, provided that recommendations set forth herein are followed.

This opportunity to be of service is sincerely appreciated. If you have any questions pertaining to this report, please call the undersigned.

Respectfully submitted.

Cal Land Engineering, Inc. (CLE)

dba Quartech Consultants (QCI)

Jack C. Lee, GE 2153

Giovani Valdivia

Project Engineer

Reviewed by:

Fred Aflakian, CEG 2051

No. 2051 Certified Engineering Geologist

2153 Exp. 3-31-21

> Abe Kazemzadeh Project Engineer

REPORT OF GEOLOGIC AND GEOTECHNICAL ENGINEERING INVESTIGATION

Proposed Residential Development

APN: 5308-025-027 1818 Peterson Avenue South Pasadena, California

Prepared by

QUARTECH CONSULTANTS (QCI)
Project No.: 15-023-138bGE
May 12, 2020

TABLE OF CONTENT

1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
3
4
4
5
6
6
6
6 6
6
6 6 6 6
6 6 6

7.1.2 Excavation/Surficial Soil Removals7
7.1.3 Treatment of Removal Bottoms7
7.2 TEMPORARY EXCAVATION7
7.2.1 Sloping Excavation8
7.2.2 Shoring8
7.3 FOUNDATION DESIGN8
7.3.1 Shallow Foundation9
7.3.2 Caisson Foundation9
7.3.3 Settlement9
7.3.4 Lateral Pressures9
7.4 FOUNDATION CONSTRUCTION
7.5 CONCRETE FLATWORK
7.6 RETAINING WALL BACKFILL AND DRAINAGE
7.7 TEMPORARY EXCAVATION AND BACKFILL
8.0 INSPECTION12
9.0 CORROSION POTENTIAL12
9.0 SEISMIC DESIGN12
11.0 REMARKS13
12.0 REFERENCE

Dr. Kevin W. Chu QCI Project No.: 15-023-138bGE

1.0 INTRODUCTION

1.1 Purpose

This report presents a summary of our preliminary geotechnical engineering investigation for the proposed residential development at the subject site. The purposes of this investigation were to evaluate the subsurface conditions at the area of proposed construction and to provide recommendations pertinent to grading, foundation design and other relevant parameters.

1.2 Scope of Services

Our scope of services included the followings:

- Review of available soil and geologic data of the subject site and its vicinity.
- Surface mapping and logging/sampling (subsurface exploration) of two hand dug test pits to a maximum depth of 7.5 feet below the existing ground surface. Test pit logs are presented in Appendix A (Field Investigation).
- Laboratory testing of representative samples obtained from the subject site to investigate
 engineering characteristics of the onsite soils. The laboratory test results are presented in
 Appendix B (Laboratory Testing) and on the test pit logs (Appendix A).
- Engineering analyses of the geotechnical data obtained from our background studies, field investigation, and laboratory testing.
- Preparation of this report to present our findings, conclusions, and recommendations.

1.3 Proposed Construction

It is our understanding that the lot will be utilized for the construction of a single-family residence. The proposed building is anticipated to be a multi-level wood frame structure. Column loads are unknown to us at this time, but are expected to be light to medium.

1.4 Site Conditions

The subject site is located on the east side of Peterson Avenue, just south of Hill Drive in the City of South Pasadena, California. The approximate regional location is shown on the attached Site Location Map (Figure 1). The site consists of a sloping ground parcel of land, which the slope ratio is approximately ranging from 1.2 to 1 (horizontal to vertical) to 2 to 1 (horizontal to vertical) or flatter. Based on our review of the regional map, it is estimated the total relief of this slope between Peterson Avenue and rear property line is approximately 60 feet. No major erosion was observed during our field investigation. Detail configuration of the site is presented in the attached Site Plan (Figure 2).

1.5 Site History

A geotechnical report was issued for the site by Applied Earth Sciences dated February 26, 2005. Based on this report, it is understood that this report was prepared for the construction of a single-family residence. The planned garage was designed at or near the street level. Shallow foundation and/or caissons founded on competent bedrock was recommended for the support of the planned residence and retaining walls. Surficial slope stability and gross slope stability yielded an adequate factor of safety against sliding. The location of the Test Pits and other geologic data by Applied Earth Sciences is included on the enclosed Figure 2.

2.0 FIELD EXPLORATION AND LABORATORY TESTING

2.1 Field Exploration

Due to the limited access of the site, our subsurface exploration consisted of two hand dug test pits to a maximum depth of 7.5 feet below the existing ground surface. Approximate locations of the test pits are shown on the attached Site Plan (Figure 2). The purpose of the explorations was to assess the engineering characteristics of the onsite soils with respect to the proposed development. An engineering geologist logged the test pits. Relatively undisturbed soil and bulk samples were collected during excavation for laboratory testing. Test pit logs are presented in Appendix A.

2.2 Laboratory Testing

Representative samples were tested for the following parameters: in-situ moisture content and density, direct shear strength, expansion index, Atterberg Limits and corrosion potential. The results of our laboratory testing along with a summary of the testing procedures are presented in Appendix B. In-situ moisture and density test results are provided on the test pit logs (Appendix A).

3.0 GEOLOGIC CONDITIONS

3.1 Site Geology

The earth materials encountered at the subject site include colluvium and bedrock. Description of the subsurface materials from top down is provided as follows:

Colluvium (Qc) -The colluvium consisted of a sandy clay to clayey silt layer, grayish to medium brown, slightly moist. The depth of the existing colluvium where encountered is approximate 5 feet. The encountered colluvium was loose, porous and slightly rooted and not suitable for structural supports.

Monterey Formation (Tmsl)

Based on our review of the regional geological map and field investigation, below the colluvium is the bedrock of the Monterey Formation. Bedrock consisted of sandstone, yellowish brown in color with gray siltstone interbeds. The encountered bedrock was slightly moist, moderately hard and fractured. Bedding is relatively uniform oriented, striking west and dips northerly between 50 to 65 degrees.

3.2 Geologic Structures

Based on our review the referenced reports and our subsurface exploration, bedrock generally dips toward northwest at moderate to high angles. Bedding plane orientation generally appears neutral to unfavorable with respect to the overall site stability.

3.3 Ground Water

Static ground water levels were not encountered during our subsurface investigation. Groundwater is therefore not expected to be a significant constraint during the construction.

4.0 SEISMICITY

4.1 Estimated Earthquake Ground Motions

In order to estimate the seismic ground motions at the subject site, QCI has utilized the seismic hazard map published by California Geological Survey. According to this report, the peak ground alluvium acceleration at the subject site for a 2% and 10% probability of exceedance in 50 years is about 0.956g and 0.563g, respectively (2008 USGS Interactive Deaggregation). Site modified peak ground acceleration (PGAM), corresponding to USGS Design Map Summary Report, ASCE 7-16 Standard is 1.100g.

4.2 Faulting

Based on our study, there are no known active faults crossing the property. The nearest known regional fault is the Raymond Fault is located approximately 1.1 miles from the site.

4.3 Seismicity

The subject site is located in southern California, which is a tectonically active area. The type and magnitude of seismic hazards affecting the site depend on the distance to causative faults, the intensity, and the magnitude of the seismic event. Table 1 indicates the distance of the fault zones

and the associated maximum magnitude earthquake that can be produced by nearby seismic events. As indicated in Table 1, the Raymond fault is considered to have the most significant effect to the site from a design standpoint.

TABLE 1

Characteristics and Estimated Earthquakes for Regional Faults

Fault Name	Approximate Distance To The Site	Maximum Magnitude Earthquake (Mmax)
Raymond	1.1	6.8
Verdugo	2.2	6.9
Elysian Park (Upper)	2.8	6.7
Hollywood	3.4	6.7
Santa Monica Conn alt 2	6.4	7.4
Sierra Madre Connected	7.0	7.3
Sierra Madre	7.0	7.2
Puente Hills (LA)	9.2	7.0
Elsinoe;W	10.4	7.0
Clamshell-Sawpit	11.2	6.7
Newport Inglewood Conn alt 2	12.9	7.5
Newport-Inglewood, alt 1	13.0	7.2
Newport Inglewood Conn alt 1	13.0	7.5
Puente Hills (Santa Fe Springs)	13.7	6.7
Santa Monica Connected alt 1	13.9	7.3
Santa Monica, alt 1	13.9	6.6
Sierra Madre (San Fernando)	13.9	6.7
San Gabriel	16.0	7.3
Puente Hills (Coyote Hills)	16.3	6.9
San Jose	17.5	6.7
Northridge	18.4	6.9

Reference: 2008 National Seismic Hazard Maps - Source Parameters

5.0 SLOPE STABILITY

5.1 General

The site consists of a sloping ground parcel of land which the slope ratio is approximately ranging from 1.2 to 1 (horizontal to vertical) and 2 to 1 (horizontal to vertical) or flatter. From the street to approximately 20 feet into the property there is an ascending cut slope of approximately 1.2 to 1 (horizontal to vertical). From the end of the cut slope to the easterly property line a gentle 2 to 1 (horizontal to vertical) ascending slope for a distance of 40 feet. Total relief is approximately 40 feet. No evidence of major surficial erosions was observed during our field investigation.

Both surficial slope stability and gross slope stability of the existing slope is analyzed and the computer print-out is presented in Appendix C. Shear strength of the bedrock is selected based on our laboratory testing results.

Based on our analyses, it is recommended that 2 row of stabilization caissons should be constructed at the rear portion of the proposed retaining walls as indicated at the attached Site Plan, Figure 2. The caissons may be spacing at the distance of 6 feet for 2-foot diameter caisson and 9 feet for 3-foot diameter caisson. The recommended minimum depth of the caissons and lateral loads are presented in the following table.

TABLE 2
Caisson Recommendations

Row	Depth Below Calculated Slip Plane (feet)	Recommended Lateral Loads per 2' Diameter Caissons (lbs)		
1	21	120,000		
2	6	120,000		

The approximate locations of Row 1 and Row 2 are indicated in the attached Site Plan, Figure 2. Resistance to the above recommended lateral loads may be provided by the friction acting at the base of the caissons and by the passive earth pressure for the portion of the caissons embedded below the above calculated slip plane. The required embedment depth may be designed by the project structural engineer.

5.2 Surficial Slope Stability and Landscaping

Slopes should be protected from surface runoff by means of top-of-slope compacted earth berms or concrete interceptor drains. All slopes should be landscaped with a suitable plant material requiring minimal cultivation and irrigation water in order to thrive. An irrigation system should be installed. Overwatering and subsequent saturation of slope surfaces should be avoided.

At all times avoid saturation or desiccation of the slope materials since these conditions tend to deteriorate the slope. Irrigation facilities should be turned off during the rainy season. Maintenance includes correction of defective drainage terraces on slope, elimination of

burrowing rodents, corrections of defective irrigation facilities, and controlled slope vegetation growth. Irrigation programs for all landscaped slopes should be well controlled and minimized. Seasonal adjustments should be made to prevent excess moisture in the slope soils. Overwatering, especially prior to winter storms, may generate surficial slope distress.

6.0 CONCLUSIONS

Based on the results of our subsurface investigation and reference reports, it is our opinion that the proposed construction is feasible from a geotechnical standpoint, provided the recommendations contained herein are incorporated in the design and construction. The following is a summary of the geotechnical design and construction factors that may affect the development of the site.

6.1 Seismicity

Based on our studies on seismicity, there are no known active faults crossing the property. However, the site is located in a seismically active region and is subject to seismically induced ground shaking from nearby and distant faults, which is a characteristic of all Southern California.

6.2 Seismic Induced Hazards

Based on our review of the "Seismic Hazard Zones, Los Angeles Quadrangle" by CGS (formerly CDMG), it is concluded that the site is located in the mapped potential seismic induced landslide areas.

6.3 Excavatability

Based on our subsurface investigation, excavation of the subsurface materials should be accomplished with conventional earthwork equipment.

6.4 Surficial Soil Conditions

Based on our review of the referenced reports and recent site investigation, it is understood that the site has surficial colluvium soils. Considering that the proposed construction will be located within the existing ascending slope area, the existing slope should be properly maintained. All surface water should be directed via approved drainage devices. Concentrated flows or uncontrol flow should be avoided within the site and slopes.

6.5 Groundwater

Groundwater was not encountered during our field exploration. Groundwater is therefore not expected to be a significant constraint during the construction.

7.0 RECOMMENDATIONS

Based on the subsurface conditions exposed during field investigation and referenced report, it is recommended that the following recommendations be incorporated in the design and construction phases of the project.

7.1 Grading

7.1.1 Site Preparation

Prior to initiating grading operations, any existing vegetation, trash, debris, over-sized materials (greater than 8 inches), and other deleterious materials within fill areas should be removed.

7.1.2 Excavation/Surficial Soil Removals

Within grading limits, existing surficial soils should be removed to expose competent bedrock. All excavations should be observed by a representative of this office to verify the subgrade soil conditions and determine if additional removals or other mitigative measures are needed.

Should the bedrock materials with differing expansion characteristics are exposed within the building pads, the building pad(s) subgrade require overexcavation and replacement with compacted fill to a minimum depth of 4 feet below the pad grade to provide a uniform consistency and thickness of soils for foundation support. Outside the building areas, the colluvium is loose and weathered and should be removed to expose competent bedrock.

7.1.3 Treatment of Removal Bottoms

Soils exposed within areas approved for fill placement should be scarified to a depth of 6 inches, conditioned to near optimum moisture content, then compacted in-place to 90 percent relative compaction based on laboratory standard ASTM D-1557-12.

7.2 Temporary Excavation

The required construction for the proposed lower level pad will extend to a maximum of approximately 6~20 feet below the existing ground surface. The criteria for the temporary excavation depends on many factors, which include depth of excavation, soil conditions,

distance to the existing structures or public improvement, consequences of potential ground movement, and construction procedures.

7.2.1 Sloping Excavation

Should the space be available at the site, the required excavation may be made with sloping banks. Based on materials encountered in the test borings, it is our opinion that sloped excavations may be made no steeper than 1:1 (horizontal to vertical) for the underlying native soils. Flatter slope cuts may be required if loose soils encountered during excavation. No heavy construction vehicles, equipment, nor surcharge loading should be permitted at the top of the slope. A representative of this office should inspect the temporary excavation to make any necessary modifications or recommendations.

7.2.2 Shoring

Shoring will be required for temporary excavation made vertically or near vertically. An active earth pressure of 30 pounds per cubic foot may be used for the temporary cantilever shoring system. Any surcharged loads resulting from the adjacent building or the traffic in the adjacent street or alley should be considered as an added loads to the above recommended. Soldier piles or beams should be spaced at the required distance specified by the project structural/shoring engineer. Lagging may be required to span between soldier piles to support the lateral earth pressure. Concrete and/or lean-mix slurry may be used for the temporary shoring soldier piles. The use of the slurry should have sufficient strength to resist the lateral pressures as recommended in this report.

The shoring and bracing should be designed and constructed in accordance with current requirements of CAL/OSHA and all other public agencies having jurisdiction. Careful examination of the soil excavation and inspection of on-site installation of the shoring system by a representative of this office is recommended to verify the conditions or to make recommendations as are pertinent if different conditions are disclosed during excavation.

7.3 Foundation Design

Both conventional shallow foundation and caissons may be used for the proposed residential foundation support. The following presented the foundation design recommendations:

Dr. Kevin W. Chu

QCI Project No.: 15-023-138bGE

Page 9 of 13

May 12, 2020

7.3.1 Shallow Foundation

An allowable bearing value of 5000 pounds per square foot (psf) may be used for design of continuous and pad footings with a minimum of 12 and 24 inches in width, respectively. All footings should be a minimum of 24 inches deep and founded at least 18 inches into the competent bedrock, whichever is deeper. This value may be increased by one third (1/3) when considering short duration seismic or wind loads.

7.3.2 Caisson Foundation

In order to increase the factor of safety of the proposed slope, stabilization caissons should be constructed at the rear portion of the planned development. The approximately locations of the recommended stabilization caissons are indicated in the attached Site Plan, Figure 2. The caissons should be a minimum of 10 feet into competent bedrock. Caissons may be designed for an allowable end bearing of 5000 psf. Caisson may be assumed fixed at 2 feet into bedrock. Caissons should be at least 24 inches in diameter to facilitate cleanout. The base of all caissons excavations should be cleaned of all loose materials. All caissons should be tied in two horizontal directions with grade beams or footings.

For caissons spacing greater than 3 times of the caisson diameter can be considered as isolated caissons and the passive earth pressure can be increased by 100 percent.

7.3.3 Settlement

Settlement of the footings placed as recommended and subject to no more than allowable loads is not anticipated to exceed 3/4 inch. Differential settlement between adjacent columns is not anticipated to exceed 1/2 inch.

7.3.4 Lateral Pressures

The active earth pressure to be utilized for cantilever retaining wall designs may be computed as an equivalent fluid having a density of 40 pounds per cubic foot when the slope of the backfill behind the wall is level. The at-rest earth pressure to be utilized for restrained retaining wall designs may be computed as an equivalent fluid having a density of 70 pounds per cubic foot.

QCI Project No.: 15-023-138bGE

Earthquake earth pressure distribution on retaining walls retaining more than 6 feet of soils when the slope of the backfill behind the wall is level may be computed as an inverted right triangle with 33H psf at the base. Resultant seismic earth force may be applied at approximately 0.6xH from the top of the footing. H should be measured from top of footing to the top of wall. The earthquake-induced pressure should be added to the static earth pressure. Design of walls less than 6 feet in height may neglect the additional seismic pressure.

Resistance to the lateral loads may be provided by the passive earth pressure within the bedrock and by friction acting at the base of the foundation and bedrock. Passive earth pressure may be computed as an equivalent fluid pressure of 290 psf, with a maximum earth pressure of 5000 psf. An allowable coefficient of friction between soil and concrete of 0.30 may be used with the dead load forces. When combining passive pressure and frictional resistance, the passive pressure component should be reduced by one third (1/3).

7.4 Foundation Construction

It is anticipated that the entire structure will be underlain by onsite soils of medium expansion potential (EI=72). In accordance with Section 1808.6.4 of the 2019 California Building Code the soil should be stabilized by presaturation and all footings and slabs should be constructed as follows:

All footings should be founded at a minimum depth of 24 inches below the lowest adjacent ground surface and founded at least 18 inches into the completent bedrock, whichever is deeper. All continuous footings should have at least two No. 4 reinforcing bars placed within four inches of the top of the footing and two No. 4 bars shall be placed between 3 inches and 4 inches of the bottom of the footing. Foundations for exterior walls and interior bearing walls shall be tied to the floor slabs by reinforcing bars (dowels) having a diameter of not less than ½ inch (No. 4 bar) reinforcing bars and spaced at intervals not exceeding 16 inches on center. The reinforcing bars extend at least 40 bar diameters into the footings and the slabs.

Presaturation of soils is recommended for concrete slab areas. The moisture condition of each slab area should be 120 percent or greater of optimum moisture content to a depth of 24 inches below slab grade prior to pouring of slabs. Presaturation may be facilitated by maintaining the water content prior to foundation construction by periodic spraying and by slowly adding additional water after foundations are in.

7.5 Concrete Flatwork

Concrete slab for flatwork areas should be a minimum of 5 inches thick and reinforced with a minimum of No. 4 bars at 16-inches in center both ways or equivalent. All slab reinforcement should be supported to ensure proper positioning during placement of concrete.

In order to comply with the requirements of the 2019 CalGreen Section 4.505.2.1 within the moisture sensitive concrete slabs, a minimum of 4-inch thick base of ½ inches or larger clean aggregate should be provided with a vapor barrier in direct contact with concrete. A 10-mil Polyethylene vapor retarder, with joints lapped not less than 6 inches, should be placed above the aggregate and in direct contact with the concrete slabs. As an alternate method, 3 inch of sand then 10-mil polyethylene membrane and another 3 inches of sand over the membrane and under the concrete may be used, provided this request for an alternative method is approved by City Building Officials.

7.6 Retaining Wall Backfill and Drainage

Walls may be backfilled with onsite materials. A free drainage, select backfill (SE of 30 or grater), should be used against the retaining wall. The upper 18 inches of backfill should consist of native soils. All backfill should be compacted to at least 90 percent minimum relative compaction of 90 percent of ASTM D-1557-12.

Any proposed retaining walls retaining more than 2 feet of soils should be provided with backdrains to reduce the potential for the buildup of hydrostatic pressure. Backdrains should consist of 4-inch (minimum) diameter perforated PVC pipe surrounded by a minimum of 1 cubic foot per lineal foot of clean coarse gravel wrapped in filter fabric (Mirafi 140 or the equivalent) placed at the base of the wall. The drain should be covered by no less than 18 inches (vertical) of compacted wall backfill soils. The backdrain should outlet through non-perforated PVC pipe or weepholes. Alternatively, commercially available drainage fabric (i.e., J-drain) could be used. The fabric manufacturer's recommendations should be followed in the installation of the drainage fabric backdrain.

If there is not enough room for placing the above mentioned drainage systems, an alternative system such as pre-fabricated drainage system AQUADRAIN 100 BD with a 3-inch drain pipe set in gravel behind the wall, to prevent the buildup of hydrostatic pressure. This drainpipe may be connected to a 3-inch drain collector pipe connected to approve drainage system

7.7 Temporary Excavation and Backfill

All trench excavations should conform to CAL-OSHA and local safety codes. All utilities trench backfill should be brought to near optimum moisture content and then compacted to obtain a minimum relative compaction of 90 percent of ASTM D-1557-12. All temporary excavations should be observed by a field engineer of this office so as to evaluate the suitability of the excavation to the exposed soil conditions.

8.0 INSPECTION

As a necessary requisite to the use of this report, the following inspection is recommended:

- · Temporary excavations.
- Removal of surficial and unsuitable soils.
- Backfill placement and compaction.
- Utility trench backfill.

The geotechnical engineer should be notified at least 1 day in advance of the start of construction. A joint meeting between the client, the contractor, and the geotechnical engineer is recommended prior to the start of construction to discuss specific procedures and scheduling.

9.0 CORROSION POTENTIAL

Chemical laboratory tests were conducted on the existing onsite near surface materials sampled during QCI's field investigation to aid in evaluation of soil corrosion potential and the attack on concrete by sulfate soils. The testing results are presented in Appendix B.

According to 2019 CBC and ACI 318-16, a "negligible" exposure to sulfate can be expected for concrete placed in contact with the onsite soils. Therefore, Type II cement or its equivalent may be used for this project. Based on the resistivity test results, it is estimated that the subsurface soils are corrosive to buried metal pipe. It is recommended that any underground steel utilities be blasted and given protective coating. Should additional protective measures be warranted, a corrosion specialist should be consulted.

9.0 SEISMIC DESIGN

Based on our studies on seismicity, there are no known active faults crossing the property. However, the subject site is located in Southern California, which is a tectonically active area.

Based on the ASCE 7-16 Standard, CBC 2019, the following seismic related values may be used:

Seismic Parameters (Latitude: 34.103813, Longitude: -118.173981)					
Mapped 0.2 Sec Period Spectral Acceleration, Ss	2.108g				
Mapped 1.0 Sec Period Spectral Acceleration, S1	0.724g				
Site Coefficient for Site Class "D", Fa	1.2				
Site Coefficient for Site Class "D", Fv					
Maximum Considered Earthquake Spectral Response Acceleration Parameter at 0.2 Second, SMS	2.530g				
Maximum Considered Earthquake Spectral Response Acceleration Parameter at 1.0 Second, SM1					
Design Spectral Response Acceleration Parameters for 0.2 sec, Sps	1.686g				
Design Spectral Response Acceleration Parameters for 1.0 Sec, Sp1	0.676g				

The Project Structural Engineer should be aware of the information provided above to determine if any additional structural strengthening is warranted.

11.0 REMARKS

The conclusions and recommendations contained herein are based on the findings and observations at the exploratory locations. However, soil materials may vary in characteristics between locations of the exploratory locations. If conditions are encountered during construction, which appear to be different from those disclosed by the exploratory work, this office should be notified so as to recommend the need for modifications. This report has been prepared in accordance with generally accepted professional engineering principles and practice. No warranty is expressed or implied.

12.0 REFERENCE

"Report of Geotechnical Investigation, Proposed Single Family Residence, Lot 5 of Tract No. 2672, 1818 Peterson Drive, South Pasadena. California" by Applied Earth Sciences. Project No. 04-483-02, dated February 26, 2005.

APPENDIX A FIELD INVESTIGATION

Subsurface conditions were explored by excavating two hand dug test pits to a maximum depth of 11.0 feet at approximate locations shown on the enclosed Site Plan (Figure 2). Upon completion of excavation, the test pits were backfilled with onsite soils that were removed from the excavations.

The excavation of the test pits was supervised by an engineering geologist, who continuously logged the test pits and visually classified the soils in accordance with the Unified Soil Classification System. Ring samples were taken at frequent intervals.

CalLand Engineering, Inc dba Quartech Cosultants

TEST PIT LOG TP-1

PROJECT LOCATION: 1818 Peterson Avenue, South Pasadena. CA

DATE DRILLED: 11/13/2019

PROJECT NO.: <u>15-023-138</u>

SAMPLE METHOD: Hand Dug Pits

				,		ELEVATION: <u>N/A</u>
	Sam	ple				B: Bulk Bag LOGGED BY: FA
Depth (ft)	Bulk Undisturbed	Blows/12"	USCS Symbol	Dry Unit Wt. (pcf)	Moisture (%)	S: Standard Penetration Test R: Ring Sample
م م		8	SO	2 9	ž	Description of Material
2 -	R		ML	81.1	19.3	Colluvium (Qc) at 0-5': Clayey silt, medium brown, moist, firm, porous, slightly rooted, few rock fragments @ 3', moist, firm to stiff Percent of Fines: 78.9
	R		BR	90.1	18.1	Bedrock (Tmsl) at 5': Sandstone, yellowish brown, gray siltsotne interbeds, moist, moderatly hard, fractured (B) N 85 E, 65 NW
15 -						Total Depth: 6.5 feet No Groundwater Hole Backfilled
25 -						
30 -						

CalLand Engineering, Inc dba Quartech Cosultants

TEST PIT LOG TP-2

PROJECT LOCATION: 1818 Peterson Avenue, South Pasadena. CA

DATE DRILLED: 11/13/2019

PROJECT NO.: <u>15-023-138</u>

SAMPLE METHOD: Hand Dug Pits

ELEVATION: N/A

		Samp	le				B: Bulk Bag LOGGED BY: FA
		p		-0	ند	(9)	S: Standard Penetration Test
Œ		Undisturbed	12"	USCS Symbol	Dry Unit Wt. (pcf)	Moisture (%)	R: Ring Sample
Depth (ft)	Bulk	ndist	Blows/12"	S S S	y Cm	oistu	
De	ng B	<u>5</u>	98	CL	م ق	19.1	Description of Material
-	, D			CL		19.1	Colluvium (Qc) at 0-5': Sandy clay, fine grained,gray-brown, moist, porous, slightly rooted, firm
2 -							salidy clay, line granica, gray brown, moist, porous, slightly rooted, min
-				CL			@ 3', Sandy clay, medium brown, moist, firm to stiff
5 -							Percent of Fines: 76.9, LL= 43, PL= 24, Pl= 19
-		R		BR	88.2	18.5	Bedrock (Tmsl) at 5':
-							Sandstone, yellowish brown, gray siltsotne interbeds, moist, moderatly hard,
							fractured
10 -							(B) N65E, 70NW
-							
-							Total Depth: 7.5 feet
							No Groundwater Hole Backfilled
15 -							noie backfilled
-							
20 -							
25 -							
-							
30 -							
35 -							
							1
_							
1							

APPENDIX B

LABORATORY TESTING

During the subsurface exploration, QCI personnel collected relatively undisturbed ring samples and bulk samples. The following tests were performed on selected soil samples:

Moisture-Density

The moisture content and dry unit weight were determined for each relatively undisturbed soil sample obtained in the test borings in accordance with ASTM D2937 standard. The results of these tests are shown on the boring logs in Appendix A.

Shear Tests

Shear tests were performed in a direct shear machine of strain-control type in accordance with ASTM D3080 standard. The rates of deformation were 0.010 inch per minute. Selected samples were sheared under varying confining loads in order to determine the Coulomb shear strength parameters: internal friction angle and cohesion. The shear test results are presented in the attached Figures.

Consolidation Tests

Expansion Index

Expansion Index test was conducted on the existing onsite near surface materials sampled during QCI's field investigation. The test is performed in accordance with ASTM D-4829. The testing results are presented below:

Sample Location	Expansion Index	Expansion Potential	
TP-2 @ 0-5'	72	Medium	

Corrosion Potential

Chemical laboratory tests were conducted on the existing onsite near surface materials sampled during QCI's field investigation to aid in evaluation of soil corrosion potential and the attack on concrete by sulfate soils. These tests are performed in accordance with California Test Method 417, 422, 532, and 643. The testing results are presented below:

Sample Location	рН	CT-412 Chloride (ppm)	CT-417 Sulfate (% by weight)	CT-532 Min. Resistivity (ohm-cm)
TP-2 @ 0-5'	9.34	197	0.0020	1,500

Atterberg Limits

Laboratory Atterberg Limits tests were conducted on the existing onsite materials sampled during QCI's field investigation to aid in evaluation of soil liquefaction potential. These tests are performed in accordance with ASTM D4318. The testing results are presented below:

Sample Location	USCS Class. ASTM D2488	Liquid Limit %ASTM D4318	Plastic Limit %ASTM D4318	Plasticity Index ASTM D4318
TP-2 @ 0-5'	CL	43	24	19

APPENDIX C

SLOPE STABILITY

1818 Peterson, S. Pasadena Static

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE **

** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **

(All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.

Analysis Run Date: 5/11/2020 Time of Run: 09:31AM

Run By: Insert Name/company Here
Input Data Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

 $4-20-20\1818$ peterson, static.in

Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update Output Filename:

4-20-20\1818 peterson, static.OUT Unit System: English

Plotted Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

 $4-20-20\1818$ peterson, static.PLT

PROBLEM DESCRIPTION: 1818 Peterson, S. Pasadena

Static

BOUNDARY COORDINATES

Note: User origin value specified.

Add 50.00 to X-values and 0.00 to Y-values listed.

23	Top	Boundaries
23	Total	Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	50.00	70.00	72.00	73.75	1
2	72.00	73.75	100.00	73.75	1
3	100.00	73.75	100.00	85.25	1
4	100.00	85.25	117.60	85.25	1
5	117.60	85.25	117.60	92.75	1
6	117.60	92.75	127.50	92.75	1
7	127.50	92.75	127.50	102.20	1
8	127.50	102.20	133.80	102.20	1
9	133.80	102.20	133.80	110.30	1
10	133.80	110.30	144.10	110.30	1
11	144.10	110.30	144.10	117.30	1
12	144.10	117.30	145.10	117.30	1
13	145.10	117.30	148.40	119.00	1
14	148.40	119.00	148.40	121.80	1
15	148.40	121.80	149.20	121.80	1
16	149.20	121.80	149.20	121.30	1
17	149.20	121.30	151.20	121.30	1
18	151.20	121.30	177.10	136.00	1
19	177.10	136.00	199.10	141.30	1
20	199.10	141.30	216.30	148.30	1
21	216.30	148.30	229.50	157.30	1
22	229.50	157.30	240.40	169.30	1
23	240.40	169.30	260.40	169.30	0

Default Y-Origin = 0.00(ft)

Default X-Plus Value = 0.00(ft)

Default Y-Plus Value = 0.00(ft)

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 600.0 35.0 0.00 0.0 1 1 120.0 120.0 600.0 35.0 0.00 0.0 Specified Peak Ground Acceleration Coefficient (A) = 0.500(g) Specified Horizontal Earthquake Coefficient (kh) = 0.000(g)

0.0

0.0

```
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
    Specified Seismic Pore-Pressure Factor = 0.000
   EARTHQUAKE DATA HAS BEEN SUPPRESSED
  PIER/PILE LOAD(S)
         6 Pier/Pile Load(s) Specified
  Pier/Pile X-Pos Y-Pos Load
                                                     Spacing Inclination Length
                                                               (deg)
             (ft) (ft) (lbs) (ft) (deg)
100.00 73.75 100.0 1.0 90.00
117.60 85.25 100.0 1.0 90.00
127.50 92.75 100.0 1.0 90.00
133.80 102.20 100.0 1.0 90.00
144.10 110.30 100.0 1.0 90.00
148.40 119.00 100.0 1.0 90.00
                                                                                   (ft.)
      No.
       1
                                                                                     2 0
        2
                                                                                      2.0
        3
                                                                                      2.0
                                                                                      2.0
        5
                                                                                      2.0
        6
                                                                                      2.0
    NOTE - An Equivalent Line Load Is Calculated For Each Row Of Piers/Piles
             Assuming A Uniform Distribution Of Load Horizontally Between
             Individual Piers/Piles.
    A Critical Failure Surface Searching Method, Using A Random
    Technique For Generating Circular Surfaces, Has Been Specified.
    1000 Trial Surfaces Have Been Generated.
      50 Surface(s) Initiate(s) From Each Of
                                                             20 Points Equally Spaced
    Along The Ground Surface Between X = 70.00(ft)
                                         and X = 150.00 (ft)
   Each Surface Terminates Between X = 180.00(ft)
                                         and X = 240.00 (ft)
   Unless Further Limitations Were Imposed, The Minimum Elevation
   At Which A Surface Extends Is Y =
                                                       0.00(ft)
    10.00(ft) Line Segments Define Each Trial Failure Surface.
    Following Are Displayed The Ten Most Critical Of The Trial
            Failure Surfaces Evaluated. They Are
            Ordered - Most Critical First.
            * * Safety Factors Are Calculated By The Modified Bishop Method * *
            Total Number of Trial Surfaces Attempted = 1000
            Number of Trial Surfaces With Valid FS = 1000
            Statistical Data On All Valid FS Values:
                FS Max = 6.552 FS Min = 1.929 FS Ave =
                                                                                  2.603
                Standard Deviation = 0.690 Coefficient of Variation = 26.51 %
            Failure Surface Specified By 14 Coordinate Points
              Point
                          X-Surf Y-Surf
                No.
                              (ft)
                                             (ft)
                 1
                             91.053
                                               73.750
                 2
                           101.002
                                               72.749
                           110.999
                 3
                                               72.992
                           120.889
                 4
                                               74.474
                         130.518
139.737
148.404
                                               77.174
                 5
                                            81.047
86.036
92.063
99.034
                 6
                            148.404
                 7
                 8
                             156.384
                            163.554
                 9
                           169.803
                                            106.841
                10
                            175.033
                                             115.364
                11
                            179.165
                                             124.470
                12
                                          134.019
137.357
                            182.134
                1.3
                            182.731
            Circle Center At X = 104.108; Y = 152.805; and Radius = 80.126
                     Factor of Safety
                             1.929 ***
                  Individual data on the 23 slices
                                                     Tie Tie
                                Water Water
                                                                          Earthquake
                                Force Force
                                                     Force Force
                                                                            Force Surcharge

        Weight
        Top
        Bot
        Norm
        Tan
        Hor
        Ver
        I

        (lbs)
        (lbs)
        (lbs)
        (lbs)
        (lbs)
        (lbs)
        (lbs)
        (lbs)

        483.1
        0.0
        0.0
        0.
        0.
        0.0
        0.0

        1497.7
        0.0
        0.0
        0.
        0.
        0.0
        0.0

                                                                          Hor Ver Load (lbs) (lbs)
Slice Width
 No.
          (ft)
                                                                                               (lbs)
           8.9
  1
  2

      1.0
      1497.7
      0.0
      0.0
      0.
      0.
      0.0

      10.0
      14850.7
      0.0
      0.0
      0.
      0.
      0.0

      6.6
      9317.2
      0.0
      0.0
      0.
      0.
      0.
      0.

      3.3
      7310.3
      0.0
      0.0
      0.
      0.
      0.
      0.

      6.6
      13763.2
      0.0
      0.0
      0.
      0.
      0.
      0.

           1.0
                                                                                                       0.0
  3
                                                                                          0.0
                                                                                                      0.0
  4
                                                                                          0.0
                                                                                                      0.0
                                                                                         0.0
  5
                                                                                                      0.0
```

```
7
      3.0
            9216.5
                      0.0
                            0.0
                                     0.
                                            0.
                                                  0.0
                                                        0.0
                                                                0.0
                         0.0
0.0
0.0
                   0.0
                                                       0.0
                                           0.
                                                                0.0
8
      3.3
           9585.2
                                    0.
                                                  0.0
                                                        0.0
9
           21729.6
                     0.0
                                    0.
                                           0.
                                                                0.0
      5.9
                                                  0.0
     0.
10
                                                                0.0
11
                                                                0.0
12
                                                                0.0
13
                                                                0.0
14
                                                                0.0
15
                                                                0.0
16
                                                                0.0
17
                                                                0.0
18
                                                                0.0
19
                                                                0.0
20
                                                                0.0
                                                                0.0
21
22
                                                                0.0
23
                                                                0.0
      Failure Surface Specified By 16 Coordinate Points
              X-Surf Y-Surf
        Point
                           (ft)
                  (ft)
         No.
                  86.842
                             73.750
          1
                            72.852
          2
                 96.802
                            72.861
          3
                106.802
                116.760
          4
                            73.778
                            75.594
78.296
          5
                126.593
          6
                136.221
          7
                145.565
                           81.859
                           86.256
          8
                154.546
                           91.450
         9
                163.092
                171.131
         10
                            97.398
                           104.050
         11
                 178.597
                           111.353
119.245
         12
                 185.429
         13
                 191.569
                           127.662
         14
                 196.969
                           136.535
                 201.582
         15
                          143.465
                 204.420
         16
      Circle Center At X = 101.735; Y = 182.640; and Radius = 109.904
            Factor of Safety
                1.933 ***
      Failure Surface Specified By 14 Coordinate Points
        Point
                X-Surf Y-Surf
         No.
                  (ft)
                           (ft)
          1
                  95.263
                            73.750
                             72.735
          2
                 105.211
          3
                 115.209
                             72.973
                 125.097
          4
                             74.461
          5
                 134.722
                             77.175
                143.931
                            81.073
          6
                152.579
                            86.093
          7
                            92.157
                160.531
          8
                            99.168
                167.662
          9
         10
                173.858
                           107.017
                179.023
                           115.580
         11
         12
                 183.075
                           124.722
                          134.300
138.294
         13
                 185.951
         14
                 186.620
      Circle Center At X = 108.373; Y = 152.120; and Radius = 79.459
           Factor of Safety
                 1.935 ***
      Failure Surface Specified By 15 Coordinate Points
        Point
              X-Surf Y-Surf
         No.
                  (ft)
                            (ft)
                 82.632
          1
                             73.750
                 92.580
                             72.736
          2
                             72.796
          3
                 102.580
                            73.929
                 112.515
          4
```

5

122.272

76.122

```
6
           131.737
                        79.350
                    83.576
88.750
94.812
   7
           140.800
   8
           149.358
   9
           157.310
                    101.694
          164.566
  10
          171.041
  11
                     117.586
  12
          176.661
  13
          181.360
                     126.413
                     135.693
  14
          185.085
  15
          185.757
                      138.086
Circle Center At X = 97.023; Y = 165.647; and Radius = 93.017
     Factor of Safety
     *** 1.940 ***
Failure Surface Specified By 15 Coordinate Points
 Point X-Surf Y-Surf
  No.
                     (ft)
           (ft)
   1
            95.263
                       73.750
                       72.793
   2
           105.217
   3
           115.217
                        72.906
                       74.089
           125.146
   4
   5
          134.893
                      76.327
   6
          144.343
                      79.596
          153.390
   7
                      83.857
   8
          161.929
                      89.061
   9
          169.862
                       95.149
  10
          177.098
                     102.052
                     109.688
          183.554
  11
          189.156
  12
                     117.972
  13
           193.839
                     126.808
                   136.094
141.276
           197.550
  14
           199.001
  15
Circle Center At X = 109.160; Y = 166.032; and Radius = 93.323
     Factor of Safety
          1.941 ***
         **** END OF GSTABL7 OUTPUT ****
```

1818 Peterson, S. Pasadena Seismic


```
*** GSTABL7 ***
```

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE **

** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.

Analysis Run Date: 5/14/2020 Time of Run: 02:42PM

Run By: Insert Name/company Here
Input Data Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, seismic.in

Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, seismic.OUT

Unit System: English

Plotted Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, seismic.PLT PROBLEM DESCRIPTION: 1818 Peterson, S. Pasadena

Seismic

BOUNDARY COORDINATES

Note: User origin value specified.

Add 50.00 to X-values and 0.00 to Y-values listed.

23	Top	Boundaries
23	Total	Boundaries

25 IOCa	i boundarie.	3			
Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	50.00	70.00	72.00	73.75	1
2	72.00	73.75	100.00	73.75	1
3	100.00	73.75	100.00	85.25	1
4	100.00	85.25	117.60	85.25	1
5	117.60	85.25	117.60	92.75	1
6	117.60	92.75	127.50	92.75	1
7	127.50	92.75	127.50	102.20	1
8	127.50	102.20	133.80	102.20	1
9	133.80	102.20	133.80	110.30	1
10	133.80	110.30	144.10	110.30	1
11	144.10	110.30	144.10	117.30	1
12	144.10	117.30	145.10	117.30	1
13	145.10	117.30	148.40	119.00	1
14	148.40	119.00	148.40	121.80	1
15	148.40	121.80	149.20	121.80	1
16	149.20	121.80	149.20	121.30	1
17	149.20	121.30	151.20	121.30	1
18	151.20	121.30	177.10	136.00	1
19	177.10	136.00	199.10	141.30	1
20	199.10	141.30	216.30	148.30	1
21	216.30	148.30	229.50	157.30	1
22	229.50	157.30	240.40	169.30	1
23	240.40	169.30	260.40	169.30	0

Default Y-Origin = 0.00(ft)

Default X-Plus Value = 0.00(ft)

Default Y-Plus Value = 0.00(ft)

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. $1\ 120.0\ 120.0\ 600.0\ 35.0\ 0.00\ 0.0\ 1$ Specified Peak Ground Acceleration Coefficient (A) = 1.100(g)Specified Horizontal Earthquake Coefficient (kh) = 0.150(g)

```
Specified Vertical Earthquake Coefficient (kv) =
                                                        0.000(a)
 Specified Seismic Pore-Pressure Factor = 0.000
PIER/PILE LOAD(S)
     6 Pier/Pile Load(s) Specified
Pier/Pile X-Pos Y-Pos Load Spacing Inclination Length
         e X-Pos Y-Pos Load Spacing Inclination Length (ft) (ft) (lbs) (ft) (deg) (ft) 100.00 73.75 100.0 1.0 90.00 2.0 117.60 85.25 100.0 1.0 90.00 2.0 127.50 92.75 100.0 1.0 90.00 2.0 133.80 102.20 100.0 1.0 90.00 2.0 144.10 110.30 100.0 1.0 90.00 2.0 148.40 119.00 100.0 1.0 90.00 2.0
   No.
                                                                    2.0
    1
    2
                                                                     2.0
    3
                                                                     2.0
                                                                     2.0
    5
                                                                     2.0
                                                                     2.0
 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Piers/Piles
        Assuming A Uniform Distribution Of Load Horizontally Between
        Individual Piers/Piles.
 A Critical Failure Surface Searching Method, Using A Random
 Technique For Generating Circular Surfaces, Has Been Specified.
 1000 Trial Surfaces Have Been Generated.
                                                20 Points Equally Spaced
   50 Surface(s) Initiate(s) From Each Of
 Along The Ground Surface Between X = 70.00(ft)
                               and X = 150.00 (ft)
Each Surface Terminates Between X = 180.00 (ft)
                               and X = 240.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
 10.00(ft) Line Segments Define Each Trial Failure Surface.
 Following Are Displayed The Ten Most Critical Of The Trial
       Failure Surfaces Evaluated. They Are
       Ordered - Most Critical First.
       * * Safety Factors Are Calculated By The Modified Bishop Method * *
       Total Number of Trial Surfaces Attempted = 1000
       Number of Trial Surfaces With Valid FS = 1000
       Statistical Data On All Valid FS Values:
          FS Max = 4.976 FS Min = 1.509 FS Ave = 1.981 Standard Deviation = 0.472 Coefficient of Variation = 23.81 %
       Failure Surface Specified By 16 Coordinate Points
         Point X-Surf Y-Surf
                                   (ft)
           No.
                      (ft)
                    86.842
                                    73.750
            1
                      96.802
                                    72.852
                  106.802
116.760
126.593
136.221
145.565
154.546
163.092
171.131
            3
                                    72.861
                                    73.778
            4
            5
                                    75.594
                                    78.296
            6
                                   81.859
            7
            8
                                     86.256
                                   91.450
97.398
            9
           10
                    178.597
                                  104.050
           11
                    185.429
                                   111.353
           12
                                   119.245
                    191.569
           13
                    196.969
                                   127.662
           14
                    201.582 136.535
204.420 143.465
           15
                    201.582
       Circle Center At X = 101.735; Y = 182.640; and Radius = 109.904
              Factor of Safety
              *** 1.509 ***
             Individual data on the 26 slices
```

			Water	Water	Tie	Tie	Earthqu	ıake	
			Force	Force	Force	Force	Ford	ce Sur	charge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1	10.0	536.7	0.0	0.0	0.	0.	80.5	0.0	0.0
2	3.2	344.1	0.0	0.0	0.	0.	51.6	0.0	0.0
3	6.8	10114.3	0.0	0.0	0.	0.	1517.2	0.0	0.0
4	10.0	14256.2	0.0	0.0	0.	0.	2138.4	0.0	0.0
5	0.8	1149.1	0.0	0.0	0.	0.	172.4	0.0	0.0
-						0.			

```
9.0 19410.5 0.0 0.0 0. 0. 2911.6 0.0
0.9 1852.9 0.0 0.0 0. 0. 277.9 0.0
6.3 19253.4 0.0 0.0 0. 0. 2888.0 0.0
2.4 9398.4 0.0 0.0 0. 0. 1409.8 0.0
7.9 28837.2 0.0 0.0 0. 0. 4325.6 0.0
1.0 4297.0 0.0 0.0 0. 0. 644.6 0.0
0.5 1988.7 0.0 0.0 0. 0. 298.3 0.0
2.8 12151.1 0.0 0.0 0. 0. 298.3 0.0
2.8 3682.3 0.0 0.0 0. 0. 1822.7 0.0
0.8 3682.3 0.0 0.0 0. 0. 1338.2 0.0
2.0 8921.2 0.0 0.0 0. 0. 1338.2 0.0
3.3 14782.8 0.0 0.0 0. 0. 552.3 0.0
8.5 37707.4 0.0 0.0 0. 0. 5656.1 0.0
8.0 34638.6 0.0 0.0 0. 0. 5656.1 0.0
8.0 34638.6 0.0 0.0 0.0 0. 883.7 0.0
6.0 24532.5 0.0 0.0 0.0 0. 3679.9 0.0
1.5 5891.5 0.0 0.0 0. 0. 3679.9 0.0
6.1 17278.2 0.0 0.0 0. 0. 3625.4 0.0
6.1 17278.2 0.0 0.0 0.0 0. 3625.4 0.0
6.1 17278.2 0.0 0.0 0.0 0. 3625.4 0.0
2.1 2897.9 0.0 0.0 0.0 0. 342.1 0.0
2.8 983.4 0.0 0.0 0. 0. 342.1 0.0
Failure Surface Specified By 17 Coordinate Points
                   19410.5
 6
            9.0
                                      0.0
                                                  0.0
                                                                  0.
                                                                               0. 2911.6
                                                                                                     0.0
                                                                                                                   0.0
                                                                                                                   0.0
 7
 8
                                                                                                                   0.0
 9
                                                                                                                   0.0
10
                                                                                                                   0.0
                                                                                                                  0.0
11
12
                                                                                                                   0.0
13
                                                                                                                  0.0
14
                                                                                                                  0.0
15
                                                                                                                  0.0
16
                                                                                                                  0.0
17
                                                                                                                   0.0
                                                                                                                  0.0
18
19
                                                                                                                   0.0
                                                                                                                   0.0
20
21
                                                                                                                   0.0
22
                                                                                                                   0.0
23
                                                                                                                   0.0
24
                                                                                                                   0.0
25
                                                                                                                   0.0
                                                                                                                  0.0
26
            Failure Surface Specified By 17 Coordinate Points
               Point X-Surf Y-Surf
                                                 (ft)
                                (ft)
                 No.
                                                  73.750
                               86.842
                  1
                                             72.804
72.717
73.490
75.118
77.589
80.884
84.978
89.842
95.439
101.728
108.663
                                96.797
                  2
                                                   72.804
                  3
                              106.797
                  4
                             116.767
                             126.633
                  5
                             136.324
                  6
                  7
                               145.765
                  8
                               154.889
                  9
                               163.626
                             171.913
                            179.688
                 10
                 11
                             186.893
                 12
                                                 116.191
                 13
                             193.475
                                                 124.257
                 14
                             199.385
                 15
                              204.580
                                                 132.802
                                             141.762
146.017
                 16
                               209.021
                 17
                               210.691
            Circle Center At X = 102.804; Y = 188.825; and Radius = 116.176
                     Factor of Safety
                     *** 1.514 ***
            Failure Surface Specified By 18 Coordinate Points
               Point X-Surf Y-Surf
                 No.
                                 (ft)
                                                  (ft)
                  1
                                82.632
                                                     73.750
                                92.588
                                                   72.815
                  2
                                                   72.678
                              102.587
                  3
                                                   73.339
                  4
                              112.565
                                                  74.796
                  5
                             122.458
                  6
                             132.204
                                                  77.038
                  7
                             141.739
                                                  80.051
                  8
                             151.003
                                                  83.816
                                                  88.308
                  9
                              159.937
                                                 93.500
                 10
                              168.484
                 11
                               176.589
                                                    99.358
                 12
                               184.200
                                                105.844
                                                 112.917
                 13
                               191.269
                                                 120.532
                 14
                               197.750
                 15
                                203.603
                                                   128.641
                                                 137.191
                 16
                                208.789
                                                  146.127
                                213.276
                 17
                                                147.256
                              213.734
                 18
            Circle Center At X = 99.323; Y = 197.647; and Radius = 125.017
```

Factor of Safety

```
1.518
Failure Surface Specified By 17 Coordinate Points
               X-Surf (ft) (ft)

86.842 73.750

96.777 72.612

106.775 72.391

116.750 73.090

126.619 74.702

136.299 77.214

145.706 80.605

154.763 84.846

163.391 89.900

171.518 95.727

179.076 102.275

186.001 109.490

192.233 117.310

197.720 125.670

202.416 134.499

206.282 143.722

206.462 144.296

enter At X = 104.173 ; Y
   Point X-Surf Y-Surf
     No.
      1
      2
       3
       4
       5
       6
      7
            163.391
171.518
179.076
186.001
      8
9
     10
     11
     12
     13
     14
     15
     16
     17
Circle Center At X = 104.173; Y = 181.092; and Radius = 108.732
           Factor of Safety
                    1.521 ***
                 **** END OF GSTABL7 OUTPUT ****
```

1818 Peterson, S. Pasadena Static

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE **

** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices.

(Includes Spencer & Morgenstern-Price Type Analysis)

Including Pier/Pile, Reinforcement, Soil Nail, Tieback,

Nonlinear Undrained Shear Strength, Curved Phi Envelope,

Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water

Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. *******************

Analysis Run Date: 5/12/2020 10:36AM Time of Run:

Run By: Insert Name/company Here
Input Data Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, static aniso.in

Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, static aniso.OUT

Unit System: English

Plotted Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, static aniso.PLT

PROBLEM DESCRIPTION: 1818 Peterson, S. Pasadena

Static

BOUNDARY COORDINATES

Note: User origin value specified.

Add 50.00 to X-values and 0.00 to Y-values listed.

23	Top	Boundaries
23	Total	Boundaries

23 Total	r Boundaries	5			
Boundary	X-Left	Y-Left	X-Right	Y-Right	
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	50.00	70.00	72.00	73.75	1
2	72.00	73.75	100.00	73.75	1
3	100.00	73.75	100.00	85.25	1
4	100.00	85.25	117.60	85.25	1
5	117.60	85.25	117.60	92.75	1
6	117.60	92.75	127.50	92.75	1
7	127.50	92.75	127.50	102.20	1
8	127.50	102.20	133.80	102.20	1
9	133.80	102.20	133.80	110.30	1
10	133.80	110.30	144.10	110.30	1
11	144.10	110.30	144.10	117.30	1
12	144.10	117.30	145.10	117.30	1
13	145.10	117.30	148.40	119.00	1
14	148.40	119.00	148.40	121.80	1
15	148.40	121.80	149.20	121.80	1
16	149.20	121.80	149.20	121.30	1
17	149.20	121.30	151.20	121.30	1
18	151.20	121.30	177.10	136.00	1
19	177.10	136.00	199.10	141.30	1
20	199.10	141.30	216.30	148.30	1
21	216.30	148.30	229.50	157.30	1
22	229.50	157.30	240.40	169.30	1
23	240.40	169.30	260.40	169.30	0

Default Y-Origin = 0.00(ft)

Default X-Plus Value = 0.00(ft)

Default Y-Plus Value = 0.00(ft)

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 600.0 35.0 0.00 0.0 1 1 120.0

ANISOTROPIC STRENGTH PARAMETERS

1 soil type(s)

```
Soil Type 1 Is Anisotropic
```

Number Of Direction Ranges Specified = 4

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	-90.0	600.00	35.00
2	22.0	600.00	35.00
3	35.0	250.00	23.00
4	90.0	600.00	35.00

ANISOTROPIC SOIL NOTES:

- (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.
- (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack.
- (3) An input value of 0.03 for Phi will set both Phi and C equal to zero, with water weight in the tension crack. Specified Peak Ground Acceleration Coefficient (A) = 0.500(g) Specified Horizontal Earthquake Coefficient (kh) = 0.000(q) Specified Vertical Earthquake Coefficient (kv) = 0.000(g)Specified Seismic Pore-Pressure Factor = 0.000 PIER/PILE LOAD(S)

6 Pier/Pile Load(s) Specified

Pier/Pile	X-Pos	Y-Pos	Load	Spacing	Inclination	Length
No.	(ft)	(ft)	(lbs)	(ft)	(deg)	(ft)
1	100.00	73.75	100.0	1.0	90.00	2.0
2	117.60	85.25	100.0	1.0	90.00	2.0
3	127.50	92.75	100.0	1.0	90.00	2.0
4	133.80	102.20	100.0	1.0	90.00	2.0
5	144.10	110.30	100.0	1.0	90.00	2.0
6	148.40	119.00	100.0	1.0	90.00	2.0

NOTE - An Equivalent Line Load Is Calculated For Each Row Of Piers/Piles Assuming A Uniform Distribution Of Load Horizontally Between Individual Piers/Piles.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

60 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 15.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	144.00	90.00	164.00	100.00	20.00
2	222.00	130.00	235.00	140.00	15.00

Following Are Displayed The Ten Most Critical Of The Trial

Failure Surfaces Evaluated. They Are

Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 60

Number of Trial Surfaces With Valid FS =

Statistical Data On All Valid FS Values:

FS Max = 3.499 FS Min = 1.506 FS Ave = 2.056

Standard Deviation = 0.445 Coefficient of Variation = 21.66 % Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	127.500	94.940
2	134.272	93.350
3	148.188	87.752
4	227.230	131.579
5	237.324	142.674
6	247.930	153.282
7	251.512	167.848
8	251.894	169.300

Factor of Safety *** 1.506 ***

Individual data on the 18 slices

			Water Force	Water Force	Tie Force	Tie Force	Earthquak Force		
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor V	/er Load	
No. 1	(ft) 6.3	(lbs) 6047.6	(lbs) 0.0	(lbs) 0.0	(lbs)	(lbs)	(lbs) (l	lbs) (lbs) 0.0	
2	0.5	957.1	0.0	0.0	0.	0.	0.0	0.0 0.0	
3	9.8	22320.8	0.0	0.0	0.	0.	0.0	0.0 0.0	
4 5	1.0 3.1	3372.5 11014.7	0.0	0.0	0.	0. 0.	0.0	0.0 0.0	
6	0.2	791.2	0.0	0.0	0.	0.	0.0	0.0 0.0	
7 8	0.8 2.0	3236.0 7783.8	0.0	0.0	0.	0.	0.0	0.0 0.0	
9	25.9	99603.3	0.0	0.0	0.	0.	0.0	0.0 0.0	
10	22.0	75946.1	0.0	0.0	0.	0.	0.0	0.0 0.0	
11 12	17.2 10.9	49638.4 30791.4	0.0	0.0	0. 0.	0. 0.	0.0	0.0 0.0	
13	2.3	6456.6	0.0	0.0	0.	0.	0.0	0.0	
14 15	7.8 3.1	21813.8 8634.3	0.0	0.0	0.	0. 0.	0.0	0.0 0.0	
16	7.5	0.0	0.0	0.0	0.	0.	0.0	0.0 0.0	
17	3.6	0.0	0.0	0.0	0.	0.	0.0	0.0 0.0	
18	0.4 Failu	0.0 re Surfac	0.0 e Specif	0.0 Fied By	0. 8 Coordin	0. nate Poir	0.0 nts	0.0	
	Poi	nt X	-Surf	Y-Sur	f				
	No 1		(ft) 27.500	(ft) 94	998				
	2	1	31.880		558				
	3		45.664		641				
	5		30.845	129. 140.					
	6		49.155	153.					
	7 8		56.323	166. 169.					
		Factor	of Safet	ΣY					
	Failu	*** 1 re Surfac	• • • • •	*** fied Bv	7 Coordin	nate Poir	nt.s		
	Poi	nt X	-Surf	Y-Sur	f				
	No 1		(ft) 27.500	(ft)	421				
	2	1	33.956		801				
	3		48.266		307				
	4 5		26.062 31.637	130. 143.					
	6		41.564						
	7	_	42.404 of Safet	169.	300				
		*** 1	.539 *	***					
	Failu Poi	re Surfac	e Specif Surf	fied By Y-Sur		nate Poir	nts		
	No		(ft)	(ft)					
	1 2		33.800 47.636	104. 101.					
	3		33.853	142.					
	4	_	38.069	156.					
	5 6		46.078	169. 169.					
	Ü	Factor	of Safet	ΣY					
	Failn	*** 1 re Surfac	• • • • •	*** Fied By	6 Coordin	nate Poir	nts		
	Poi	nt X	-Surf	Y-Sur	f	1011			
	No 1		(ft)	(ft)					
	1 2		33.800	104. 102.					
	3	1	54.590	97.	764				
	4 5		33.904	144. 157.					
	-	_		100	200				

250.520 169.300

6

```
Factor of Safety
      *** 1.596 ***
Failure Surface Specified By 7 Coordinate Points
  Point
         X-Surf Y-Surf
                       (ft)
92.750
92.348
   No.
             (ft)
           121.374
   1
    2
           121.775
           121.775 92.348

136.475 89.361

151.372 87.606

225.135 137.453

225.245 152.453

225.809 154.783
    3
    4
      Factor of Safety
     *** 1.609 ***
Failure Surface Specified By 8 Coordinate Points
  Point X-Surf Y-Surf
                       (ft)
102.200
   No.
             (ft)
   1
            127.968
                        100.407
    2
            136.446
            151.411
                         99.383
    3
           224.551
                        129.182
    4
    5
           234.658
                        140.265
           245.123
                        151.012
    6
           254.318 162.863
257.839 169.300
           254.318
      Factor of Safety
     *** 1.614 ***
Failure Surface Specified By 8 Coordinate Points
  Point X-Surf Y-Surf
                     (ft)
102.200
100.974
94.681
129.238
142.124
153.960
  No.
            (ft)
            129.246
   1
          135.988
149.604
222.310
    3
    4
          222.310
    5
           239.203
    6
                        168.332
    7
            243.498
                     169.300
           244.402
      Factor of Safety
     *** 1.647 ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
  No.
                       (ft)
             (ft)
                        97.542
   1
           127.500
           132.750
                         92.294
    2
           146.191
                          85.635
    3
                       143.209
          229.461
233.865
    4
    5
                         157.548
                     169.242
           243.258
    6
                        169.300
            243.311
      Factor of Safety
     *** 1.651 ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
             (ft)
                        (ft)
   No.
                       102.774
   1
           133.800
    2
                        102.297
           138.582
                     95.074
133.226
145.945
           151.728
    3
    4
            234.431
    5
            242.382
                     160.934
160.934
            242.963
            246.111
      Factor of Safety
      *** 1.687 ***
```

**** END OF GSTABL7 OUTPUT ****

1818 Peterson, S. Pasadena Seismic

y:\soil reports\reports 15\south pasadena\1818 peterson\update 4-20-20\slope stability\1818 peterson, seismic aniso.pl2 Run By: Insert Name/company Here 5/14/2020 02:44PM

GSTABL7 v.2 FSmin=1.124
Safety Factors Are Calculated By The Simplified Janbu Method

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE **

** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback,

Nonlinear Undrained Shear Strength, Curved Phi Envelope,

Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water

Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. *******************

Analysis Run Date: 5/14/2020 Time of Run: 02:44PM

Run By: Insert Name/company Here
Input Data Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, seismic aniso.in

Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update Output Filename:

4-20-20\Slope Stability\1818 peterson, seismic aniso.OUT

Unit System: English

Plotted Output Filename: Y:\SOIL REPORTS\REPORTS 15\South Pasadena\1818 Peterson\Update

4-20-20\Slope Stability\1818 peterson, seismic aniso.PLT

PROBLEM DESCRIPTION: 1818 Peterson, S. Pasadena

Seismic

BOUNDARY COORDINATES

Note: User origin value specified.

Add 50.00 to X-values and 0.00 to Y-values listed.

23	Top	Boundaries
23	Total	Boundaries

23 Total	r Boundaries	5			
Boundary	X-Left	Y-Left	X-Right	Y-Right	
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	50.00	70.00	72.00	73.75	1
2	72.00	73.75	100.00	73.75	1
3	100.00	73.75	100.00	85.25	1
4	100.00	85.25	117.60	85.25	1
5	117.60	85.25	117.60	92.75	1
6	117.60	92.75	127.50	92.75	1
7	127.50	92.75	127.50	102.20	1
8	127.50	102.20	133.80	102.20	1
9	133.80	102.20	133.80	110.30	1
10	133.80	110.30	144.10	110.30	1
11	144.10	110.30	144.10	117.30	1
12	144.10	117.30	145.10	117.30	1
13	145.10	117.30	148.40	119.00	1
14	148.40	119.00	148.40	121.80	1
15	148.40	121.80	149.20	121.80	1
16	149.20	121.80	149.20	121.30	1
17	149.20	121.30	151.20	121.30	1
18	151.20	121.30	177.10	136.00	1
19	177.10	136.00	199.10	141.30	1
20	199.10	141.30	216.30	148.30	1
21	216.30	148.30	229.50	157.30	1
22	229.50	157.30	240.40	169.30	1
23	240.40	169.30	260.40	169.30	0

Default Y-Origin = 0.00(ft)

Default X-Plus Value = 0.00(ft)

Default Y-Plus Value = 0.00(ft)

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 120.0 600.0 35.0 0.00 0.0 1 1 120.0

ANISOTROPIC STRENGTH PARAMETERS

1 soil type(s)

```
Soil Type 1 Is Anisotropic
```

Number Of Direction Ranges Specified = 4

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	-90.0	600.00	35.00
2	22.0	600.00	35.00
3	35.0	250.00	23.00
4	90.0	600.00	35.00

ANISOTROPIC SOIL NOTES:

- (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.
- (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack.
- (3) An input value of 0.03 for Phi will set both Phi and C equal to zero, with water weight in the tension crack. Specified Peak Ground Acceleration Coefficient (A) = 1.100(g) Specified Horizontal Earthquake Coefficient (kh) = 0.150(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g)Specified Seismic Pore-Pressure Factor = 0.000 PIER/PILE LOAD(S)
 - 6 Pier/Pile Load(s) Specified

Pier/Pile	X-Pos	Y-Pos	Load	Spacing	Inclination	Length
No.	(ft)	(ft)	(lbs)	(ft)	(deg)	(ft)
1	100.00	73.75	100.0	1.0	90.00	2.0
2	117.60	85.25	100.0	1.0	90.00	2.0
3	127.50	92.75	100.0	1.0	90.00	2.0
4	133.80	102.20	100.0	1.0	90.00	2.0
5	144.10	110.30	100.0	1.0	90.00	2.0
6	148.40	119.00	100.0	1.0	90.00	2.0

NOTE - An Equivalent Line Load Is Calculated For Each Row Of Piers/Piles Assuming A Uniform Distribution Of Load Horizontally Between Individual Piers/Piles.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

60 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 15.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	144.00	90.00	164.00	100.00	20.00
2	222.00	130.00	235.00	140.00	15.00

Following Are Displayed The Ten Most Critical Of The Trial

Failure Surfaces Evaluated. They Are

Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 60

Number of Trial Surfaces With Valid FS =

Statistical Data On All Valid FS Values:

FS Max = 2.410 FS Min = 1.124 FS Ave = 1.535

Standard Deviation = 0.308 Coefficient of Variation = 20.03 % Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	127.500	94.940
2	134.272	93.350
3	148.188	87.752
4	227.230	131.579
5	237.324	142.674
6	247.930	153.282
7	251.512	167.848
8	251.894	169.300

Factor of Safety *** 1.124 ***

Individual data on the 18 slices

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Slice No. 1 2 3 4 5 6 7 8 9	Width (ft) 6.3 0.5 9.8 1.0 3.1 0.2 0.8 2.0 25.9 22.0	Weight (1bs) 6047.6 957.1 22320.8 3372.5 11014.7 791.2 3236.0 7783.8 99603.3 75946.1	Water Force Top (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	Tie Force Norm (lbs)	e For Ta	0. 0. 0. 0. 0. 0. 0.	Hor (1bs) 907.1 143.6 3348.1		Charge Load (1bs) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
11 12 13 14 15 16 17 18	17.2 10.9 2.3 7.8 3.1 7.5 3.6 0.4 Failu Poi	•	0.0 0.0 0.0 0.0 0.0 0.0 0.0 e Speci -Surf (ft) 33.800	0.0 0.0 0.0 0.0	f	0. 0. 0. 0. 0. 0. 0. cdinate	0. 0. 0. 0. 0. 0.	7445.8 4618.7 968.5 3272.1 1295.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0.
	2 3 4 5 6	2 2 2 2 Factor		142 156 169 169	.559 .243					
	Poi No 1 2 3 4 5 6 7	re Surfac nt X	e Speci -Surf (ft) 27.500 31.880 45.664 30.845 41.372 49.155 56.323 58.793 of Safe .131	Y-Sur (ft) 94 92 86 129 140 153 166 169	.998 .558 .641 .874 .559 .382 .559					
	Failu Poi No 1 2 3 4 5 6	1 1 2 2 2 2 2 Factor	-Surf (ft) 27.500 33.956 48.266 26.062 31.637 41.564 42.404 of Safe	Y-Sur (ft) 97: 95: 91: 130: 143: 155: 169:	.421 .801 .307 .036 .962	cdinate	Poi	nts		
	Failu Poi No 1 2 3 4 5	re Surfac nt X 1 1 2 2		Y-Sui (ft) 102 100 99 129 140	rf	rdinate	Poin	nts		

```
254.318
                           162.863
       257.839
                          169.300
    8
       Factor of Safety
      *** 1.158 ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
           1-Sur
(ft)
121.374 92.7
121.775 01
136.475
   No.
                          92.750
92.348
    1
    2
           121.773 92.346
136.475 89.361
151.372 87.606
225.135 137.453
225.245 152.453
225.809 154.783
    4
    5
    6
      Factor of Safety
      *** 1.180 ***
Failure Surface Specified By 6 Coordinate Points
  Point X-Surf Y-Surf
   No.
              (ft)
                           (ft)
                         104.536
            133.800
    1
    2
            140.280
                         102.263
    3
            154.590
                           97.764
                        144.840
           233.904
    4
                      157.973
169.300
           241.151
            250.520
      Factor of Safety
      *** 1.199 ***
Failure Surface Specified By 8 Coordinate Points
  Point X-Surf Y-Surf
                      (ft)
102.200
100.974
94.681
129.238
142.124
153.960
   No.
             (ft)
             129.246
    1
          135.988
149.604
222.310
229.989
239.203
    3
    4
    5
    6
                         168.332
    7
            243.498
            243.498 168.332
244.402 169.300
      Factor of Safety
      *** 1.229 ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
                        (ft)
   No.
             (ft)
                      102.774
102.297
95.074
133.226
145.945
   1
            133.800
           138.582
    2
          151.728
234.431
242.382
    3
    4
    5
                           145.945
                       160.934
169.300
            242.963
    6
            246.111
      Factor of Safety
      *** 1.234 ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
              (ft)
                          (ft)
   No.
            138.535
   1
                         110.300
                      108.761
106.234
137.973
148.660
                         108.761
    2
            145.073
    3
            159.858
            231.514
    4
            242.040
    5
                      162.917
160.0
            246.701
247.067
       Factor of Safety
      *** 1.253 ***
         **** END OF GSTABL7 OUTPUT ****
```

APPENDIX D

BEARING CAPACITY AND LATERAL PRESSURES

CALCULATIONS

CAPACITY EVALUATION

1818 Peterson, South Pasadena

Shallow Foundation Equation:

Qult =
$$C \times N_c + r \times D \times N_q$$

C : Cohesion of Bedrock r : Unit Weight of Bedrock

D : Depth of Foundation Φ : Friction Angle of Bedrock

N_c N_q: Bearing Capacity Coefficient

Reference: Foundation and Earth Structures, Naval Design Manual 7.02, September 1986

C: 600 psf r: 120 pcf Φ: 35°

 $N_c = 50$ $N_q = 35$

 $Q = 600 \times 50 + 120 \times 3 \times 40$ = 44400 psf

SF = 6

Qall = Q/6 = 7400 psf > 5000 psf, OK

Caisson Bearing Capacity:

Qult= $r \times D Nq + C \times Nq$

С: 600 psf r: 120 pcf Ф: 35

N_c: 9 N_q: 25

 $Q = 120 \times 10 \times 25 + 600 \times 9 = 35400$

SF: 5

Qall = Q/5 = 7080 psf > 5000 psf, OK

LATERAL PRESSURE CALCULATIONS

r: Unit Weight of Bedrock C: Cohesion of Bedrock Φ: Friction Angle of Bedrock

r: 120 pcf

C: 600 psf

Ф: 35°

For Cantilever Retaining Wall up to 20 feet

Long-term, say F.S. = 2

C' = C/2 = 300 pcf

 $\phi' = \tan^{-1}(\tan 35/2) = 19^{\circ}$

 $Ka = tan^2(45 - \phi'/2) = 0.509$

 $F = rHKa - 2CKa^{1/2} = 793.6 lbs$

Pa = F/H = 793.6/20 = 39.7 pcf.

Say 40 pcf

Short-term, say F.S. = 1.5

C' = C/1.5 = 400 pcf

 $\phi' = \tan^{-1}(\tan 35/1.5) = 25^{\circ}$

 $Ka = tan^2(45 - \phi'/2) = 0.406$

 $F = rHKa - 2CKa^{1/2} = 465.4 lbs$

Pa = F/H = 465.4/20 = 23.3 pcf,

Say 30 pcf

Surcharge at 20 feet: $q = 120 \times 20 = 2400 \text{ psf}$

Strength of 20 feet τ = 300 + 120 x 20 x tan(19) = 1126 psf

Equivalent Friction Angle $\phi' = \tan^{-1}[1126/2400] = 25^{\circ}$

For Restrained Retaining Wall
At Rest Earth Pressure

Pa=r X Ko

Ko = $1-\sin(\phi')$ = 0.58 Pa = 120 X 0.58 = 70 pcf

Seismic Lateral Pressure

 $P_E = 3/8 \times r \times H^2 \times k_h$

 $PGA_{M} = 1.100g$

 $k_h = 1/2 \times 2/3 \times PGA_M = 0.366g$

 $P_E = 16.47 H^2$

 $P_E(EFP) = 33H$

Passive Earth Pressure

Earth Pressure Pp = r x Ka

 $Kp = tan^2(45 + \phi'/2) = 2.46$

 $Pp = 120 \times 2.46 = 295 pcf$ Say 290 pcf, OK

Friction $\mu = 0.67 \text{ x } \tan(\phi') = 0.31 > 0.30 \text{ OK}$

Reference: (1) "Geotechnical Engineering Analysis and Evaluation", Roy Hunt, McGraw Hill Book Company, 1986

- (2) Retaining Wall Design, City of Los Angeles Document No. P/BC 2020-083
- (3) "Principles of Foundation Engineering", by B.M. Das, PWS Publishers, 1984